Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell Rep ; 43(4): 114100, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607921

RESUMEN

Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.


Asunto(s)
Región CA1 Hipocampal , Dendritas , Células Piramidales , Humanos , Células Piramidales/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Animales , Masculino , Ratones , Dendritas/fisiología , Femenino , Persona de Mediana Edad , Anciano , Ritmo Teta/fisiología , Adulto
2.
Sci Adv ; 9(41): eade3300, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824607

RESUMEN

Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na+) and potassium (K+) currents in human pyramidal neurons can explain their fast input-output properties. Human Na+ and K+ currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na+ channel densities in human neurons, the biophysical properties of Na+ channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na+ channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na+ and K+ channels enable fast input-output properties of large human pyramidal neurons.


Asunto(s)
Neuronas , Células Piramidales , Humanos , Ratones , Animales , Neuronas/fisiología , Células Piramidales/fisiología , Potenciales de Acción/fisiología , Potenciales de la Membrana/fisiología , Sodio
3.
Sci Adv ; 9(41): eadf0708, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824618

RESUMEN

Fast-spiking interneurons (FSINs) provide fast inhibition that synchronizes neuronal activity and is critical for cognitive function. Fast synchronization frequencies are evolutionary conserved in the expanded human neocortex despite larger neuron-to-neuron distances that challenge fast input-output transfer functions of FSINs. Here, we test in human neurons from neurosurgery tissue, which mechanistic specializations of human FSINs explain their fast-signaling properties in human cortex. With morphological reconstructions, multipatch recordings, and biophysical modeling, we find that despite threefold longer dendritic path, human FSINs maintain fast inhibition between connected pyramidal neurons through several mechanisms: stronger synapse strength of excitatory inputs, larger dendrite diameter with reduced complexity, faster AP initiation, and faster and larger inhibitory output, while Na+ current activation/inactivation properties are similar. These adaptations underlie short input-output delays in fast inhibition of human pyramidal neurons through FSINs, explaining how cortical synchronization frequencies are conserved despite expanded and sparse network topology of human cortex.


Asunto(s)
Neocórtex , Neuronas , Humanos , Potenciales de Acción/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Interneuronas/fisiología
4.
Netw Neurosci ; 7(2): 811-843, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397878

RESUMEN

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but only leads to seizure freedom for roughly two in three patients. To address this problem, we designed a patient-specific epilepsy surgery model combining large-scale magnetoencephalography (MEG) brain networks with an epidemic spreading model. This simple model was enough to reproduce the stereo-tactical electroencephalography (SEEG) seizure propagation patterns of all patients (N = 15), when considering the resection areas (RA) as the epidemic seed. Moreover, the goodness of fit of the model predicted surgical outcome. Once adapted for each patient, the model can generate alternative hypothesis of the seizure onset zone and test different resection strategies in silico. Overall, our findings indicate that spreading models based on patient-specific MEG connectivity can be used to predict surgical outcomes, with better fit results and greater reduction on seizure propagation linked to higher likelihood of seizure freedom after surgery. Finally, we introduced a population model that can be individualized by considering only the patient-specific MEG network, and showed that it not only conserves but improves the group classification. Thus, it may pave the way to generalize this framework to patients without SEEG recordings, reduce the risk of overfitting and improve the stability of the analyses.

5.
BMJ Open ; 13(7): e064263, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407053

RESUMEN

INTRODUCTION: Resective epilepsy surgery is often seen as a last resort when treating drug-resistant epilepsy. Positive results on quality of life (QoL) and economic benefits after surgery argue for a less restrictive attitude towards epilepsy surgery for drug-resistant epilepsy. QoL and economic benefits are country-dependent. The objective of the Resective Epilepsy Surgery, QUality of life and Economic evaluation (RESQUE) trial is to evaluate the change in QoL before and after epilepsy surgery in Dutch people with drug-resistant epilepsy. The results will form part of an economic evaluation of epilepsy surgery in people with epilepsy (PWE) in The Netherlands. METHODS AND ANALYSIS: A longitudinal prospective multicentre cohort study involving 100 PWE undergoing epilepsy surgery between 2019 and 2025 is being performed in three Dutch academic hospitals. Excluded are PWE who have a lower level of intelligence (TIQ<70) or who do not master the Dutch language. Before surgery and 3, 6, 12 and 24 months after surgery, PWE receive validated online questionnaires (QOLIE-31, EQ-5D, iMCQ and iPCQ) on QoL, cost of care, expectations and satisfaction. Primary outcome is the change in QoL. Secondary outcomes are change in generic QoL, seizure reduction (International League Against Epilepsy Outcome Classification), medical consumption, productivity, the correlation between QoL and seizure reduction and expectation of and satisfaction with the surgery. ETHICS AND DISSEMINATION: The study design has been approved by the Medical Ethics Review Committee (METC) of Maastricht UMC+ (2019-1134) and the Amsterdam UMC (vu). At the time of writing, UMC Utrecht is in the process of considering approval. The study will be conducted according to the Dutch Medical Research Involving Human Subjects Act and the Declaration of Helsinki. The results will be publicly disclosed and submitted for publication in international peer-reviewed scientific journals. There is no veto on publication by the involved parties. TRIAL REGISTRATION: NL8278; Pre-results.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Estudios de Cohortes , Análisis Costo-Beneficio , Epilepsia Refractaria/cirugía , Epilepsia/cirugía , Epilepsia/complicaciones , Estudios Multicéntricos como Asunto , Estudios Prospectivos , Calidad de Vida , Convulsiones , Resultado del Tratamiento
6.
Nat Commun ; 14(1): 4188, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443107

RESUMEN

GWAS have identified numerous genes associated with human cognition but their cell type expression profiles in the human brain are unknown. These genes overlap with human accelerated regions (HARs) implicated in human brain evolution and might act on the same biological processes. Here, we investigated whether these gene sets are expressed in adult human cortical neurons, and how their expression relates to neuronal function and structure. We find that these gene sets are preferentially expressed in L3 pyramidal neurons in middle temporal gyrus (MTG). Furthermore, neurons with higher expression had larger total dendritic length (TDL) and faster action potential (AP) kinetics, properties previously linked to intelligence. We identify a subset of genes associated with TDL or AP kinetics with predominantly synaptic functions and high abundance of HARs.


Asunto(s)
Neuronas , Células Piramidales , Adulto , Humanos , Neuronas/metabolismo , Células Piramidales/fisiología , Cognición , Lóbulo Temporal , Encéfalo
7.
Cereb Cortex ; 33(6): 2857-2878, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35802476

RESUMEN

Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed language circuitry. We find that local connectivity is comparable with mouse layer 2/3 connections in the anatomical homologue (temporal association area), but synaptic connections in human are 3-fold stronger and more reliable (0% vs 25% failure rates, respectively). We developed a theoretical approach to quantify properties of spinous synapses showing that synaptic conductance and voltage change in human dendritic spines are 3-4-folds larger compared with mouse, leading to significant NMDA receptor activation in human unitary connections. This model prediction was validated experimentally by showing that NMDA receptor activation increases the amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in mouse connections. Since NMDA-dependent recurrent excitation facilitates persistent activity (supporting working memory), our data uncovers cortical microcircuit properties in human that may contribute to language processing in MTG.


Asunto(s)
Neocórtex , Receptores de N-Metil-D-Aspartato , Ratas , Adulto , Animales , Humanos , Ratones , Receptores de N-Metil-D-Aspartato/fisiología , Ratas Wistar , Células Piramidales/fisiología , Transmisión Sináptica/fisiología , Sinapsis/fisiología
8.
Elife ; 112022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36326213

RESUMEN

Based on neuroimaging data, the insula is considered important for people to empathize with the pain of others. Here, we present intracranial electroencephalographic (iEEG) recordings and single-cell recordings from the human insula while seven epilepsy patients rated the intensity of a woman's painful experiences seen in short movie clips. Pain had to be deduced from seeing facial expressions or a hand being slapped by a belt. We found activity in the broadband 20-190 Hz range correlated with the trial-by-trial perceived intensity in the insula for both types of stimuli. Within the insula, some locations had activity correlating with perceived intensity for our facial expressions but not for our hand stimuli, others only for our hand but not our face stimuli, and others for both. The timing of responses to the sight of the hand being hit is best explained by kinematic information; that for our facial expressions, by shape information. Comparing the broadband activity in the iEEG signal with spiking activity from a small number of neurons and an fMRI experiment with similar stimuli revealed a consistent spatial organization, with stronger associations with intensity more anteriorly, while viewing the hand being slapped.


Asunto(s)
Expresión Facial , Dolor , Femenino , Humanos , Imagen por Resonancia Magnética , Dimensión del Dolor , Mano , Mapeo Encefálico
9.
Epilepsia ; 63(11): 2925-2936, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36053862

RESUMEN

OBJECTIVE: Prolonged postictal generalized electroencephalographic suppression (PGES) is a potential biomarker for sudden unexpected death in epilepsy (SUDEP), which may be associated with dysfunctional autonomic responses and serotonin signaling. To better understand molecular mechanisms, PGES duration was correlated to 5HT1A and 5HT2A receptor protein expression and RNAseq from resected hippocampus and temporal cortex of temporal lobe epilepsy patients with seizures recorded in preoperative evaluation. METHODS: Analyses included 36 cases (age = 14-64 years, age at epilepsy onset = 0-51 years, epilepsy duration = 2-53 years, PGES duration = 0-93 s), with 13 cases in all hippocampal analyses. 5HT1A and 5HT2A protein was evaluated by Western blot and histologically in hippocampus (n = 16) and temporal cortex (n = 9). We correlated PGES duration to our previous RNAseq dataset for serotonin receptor expression and signaling pathways, as well as weighted gene correlation network analysis (WGCNA) to identify correlated gene clusters. RESULTS: In hippocampus, 5HT2A protein by Western blot positively correlated with PGES duration (p = .0024, R2  = .52), but 5HT1A did not (p = .87, R2  = .0020). In temporal cortex, 5HT1A and 5HT2A had lower expression and did not correlate with PGES duration. Histologically, PGES duration did not correlate with 5HT1A or 5HT2A expression in hippocampal CA4, dentate gyrus, or temporal cortex. RNAseq identified two serotonin receptors with expression that correlated with PGES duration in an exploratory analysis: HTR3B negatively correlated (p = .043, R2  = .26) and HTR4 positively correlated (p = .049, R2  = .25). WGCNA identified four modules correlated with PGES duration, including positive correlation with synaptic transcripts (p = .040, Pearson correlation r = .52), particularly potassium channels (KCNA4, KCNC4, KCNH1, KCNIP4, KCNJ3, KCNJ6, KCNK1). No modules were associated with serotonin receptor signaling. SIGNIFICANCE: Higher hippocampal 5HT2A receptor protein and potassium channel transcripts may reflect underlying mechanisms contributing to or resulting from prolonged PGES. Future studies with larger cohorts should assess functional analyses and additional brain regions to elucidate mechanisms underlying PGES and SUDEP risk.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Recién Nacido , Lactante , Preescolar , Niño , Serotonina , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/cirugía , Electroencefalografía/métodos , Epilepsia/patología , Lóbulo Temporal/patología , Hipocampo/patología , Receptores de Serotonina/genética
10.
Sci Rep ; 12(1): 4086, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260657

RESUMEN

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized computational model based on MEG brain networks to explore seizure propagation and the efficacy of different virtual resections. Eventually, the goal is to obtain individualized models to optimize resection strategy and outcome. We have modelled seizure propagation as an epidemic process using the susceptible-infected (SI) model on individual brain networks derived from presurgical MEG. We included 10 patients who had received epilepsy surgery and for whom the surgery outcome at least one year after surgery was known. The model parameters were tuned in in order to reproduce the patient-specific seizure propagation patterns as recorded with invasive EEG. We defined a personalized search algorithm that combined structural and dynamical information to find resections that maximally decreased seizure propagation for a given resection size. The optimal resection for each patient was defined as the smallest resection leading to at least a 90% reduction in seizure propagation. The individualized model reproduced the basic aspects of seizure propagation for 9 out of 10 patients when using the resection area as the origin of epidemic spreading, and for 10 out of 10 patients with an alternative definition of the seed region. We found that, for 7 patients, the optimal resection was smaller than the resection area, and for 4 patients we also found that a resection smaller than the resection area could lead to a 100% decrease in propagation. Moreover, for two cases these alternative resections included nodes outside the resection area. Epidemic spreading models fitted with patient specific data can capture the fundamental aspects of clinically observed seizure propagation, and can be used to test virtual resections in silico. Combined with optimization algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, can be determined with the ultimate goal to improve surgery outcome. MEG-based networks can provide a good approximation of structural connectivity for computational models of seizure propagation, and facilitate their clinical use.


Asunto(s)
Epilepsia , Magnetoencefalografía , Encéfalo/cirugía , Electroencefalografía , Epilepsia/cirugía , Humanos , Imagen por Resonancia Magnética , Convulsiones/cirugía , Resultado del Tratamiento
11.
Clin Cancer Res ; 28(8): 1572-1585, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35176144

RESUMEN

PURPOSE: Testing safety of Delta24-RGD (DNX-2401), an oncolytic adenovirus, locally delivered by convection enhanced delivery (CED) in tumor and surrounding brain of patients with recurrent glioblastoma. PATIENTS AND METHODS: Dose-escalation phase I study with 3+3 cohorts, dosing 107 to 1 × 1011 viral particles (vp) in 20 patients. Besides clinical parameters, adverse events, and radiologic findings, blood, cerebrospinal fluid (CSF), brain interstitial fluid, and excreta were sampled over time and analyzed for presence of immune response, viral replication, distribution, and shedding. RESULTS: Of 20 enrolled patients, 19 received the oncolytic adenovirus Delta24-RGD, which was found to be safe and feasible. Four patients demonstrated tumor response on MRI, one with complete regression and still alive after 8 years. Most serious adverse events were attributed to increased intracranial pressure caused by either an inflammatory reaction responding to steroid treatment or viral meningitis being transient and self-limiting. Often viral DNA concentrations in CSF increased over time, peaking after 2 to 4 weeks and remaining up to 3 months. Concomitantly Th1- and Th2-associated cytokine levels and numbers of CD3+ T and natural killer cells increased. Posttreatment tumor specimens revealed increased numbers of macrophages and CD4+ and CD8+ T cells. No evidence of viral shedding in excreta was observed. CONCLUSIONS: CED of Delta24-RGD not only in the tumor but also in surrounding brain is safe, induces a local inflammatory reaction, and shows promising clinical responses.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae/genética , Convección , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Viroterapia Oncolítica/efectos adversos , Virus Oncolíticos/genética
12.
Sci Rep ; 11(1): 19025, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561483

RESUMEN

The success of epilepsy surgery in patients with refractory epilepsy depends upon correct identification of the epileptogenic zone (EZ) and an optimal choice of the resection area. In this study we developed individualized computational models based upon structural brain networks to explore the impact of different virtual resections on the propagation of seizures. The propagation of seizures was modelled as an epidemic process [susceptible-infected-recovered (SIR) model] on individual structural networks derived from presurgical diffusion tensor imaging in 19 patients. The candidate connections for the virtual resection were all connections from the clinically hypothesized EZ, from which the seizures were modelled to start, to other brain areas. As a computationally feasible surrogate for the SIR model, we also removed the connections that maximally reduced the eigenvector centrality (EC) (large values indicate network hubs) of the hypothesized EZ, with a large reduction meaning a large effect. The optimal combination of connections to be removed for a maximal effect were found using simulated annealing. For comparison, the same number of connections were removed randomly, or based on measures that quantify the importance of a node or connection within the network. We found that 90% of the effect (defined as reduction of EC of the hypothesized EZ) could already be obtained by removing substantially less than 90% of the connections. Thus, a smaller, optimized, virtual resection achieved almost the same effect as the actual surgery yet at a considerably smaller cost, sparing on average 27.49% (standard deviation: 4.65%) of the connections. Furthermore, the maximally effective connections linked the hypothesized EZ to hubs. Finally, the optimized resection was equally or more effective than removal based on structural network characteristics both regarding reducing the EC of the hypothesized EZ and seizure spreading. The approach of using reduced EC as a surrogate for simulating seizure propagation can suggest more restrictive resection strategies, whilst obtaining an almost optimal effect on reducing seizure propagation, by taking into account the unique topology of individual structural brain networks of patients.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Epilepsia/cirugía , Procedimientos Neuroquirúrgicos/métodos , Adulto , Encéfalo/patología , Imagen de Difusión Tensora , Epilepsia/diagnóstico por imagen , Epilepsia/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
13.
Nat Commun ; 12(1): 4839, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376673

RESUMEN

The ability to maintain a sequence of items in memory is a fundamental cognitive function. In the rodent hippocampus, the representation of sequentially organized spatial locations is reflected by the phase of action potentials relative to the theta oscillation (phase precession). We investigated whether the timing of neuronal activity relative to the theta brain oscillation also reflects sequence order in the medial temporal lobe of humans. We used a task in which human participants learned a fixed sequence of pictures and recorded single neuron and local field potential activity with implanted electrodes. We report that spikes for three consecutive items in the sequence (the preferred stimulus for each cell, as well as the stimuli immediately preceding and following it) were phase-locked at distinct phases of the theta oscillation. Consistent with phase precession, spikes were fired at progressively earlier phases as the sequence advanced. These findings generalize previous findings in the rodent hippocampus to the human temporal lobe and suggest that encoding stimulus information at distinct oscillatory phases may play a role in maintaining sequential order in memory.


Asunto(s)
Potenciales de Acción/fisiología , Epilepsia/fisiopatología , Aprendizaje/fisiología , Neuronas/fisiología , Ritmo Teta/fisiología , Adolescente , Adulto , Epilepsia/diagnóstico , Femenino , Hipocampo/citología , Hipocampo/fisiología , Humanos , Masculino , Modelos Neurológicos , Neuronas/citología , Estimulación Luminosa/métodos , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Adulto Joven
14.
Acta Neuropathol ; 142(4): 729-759, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34292399

RESUMEN

Neuronal dysfunction due to iron accumulation in conjunction with reactive oxygen species (ROS) could represent an important, yet underappreciated, component of the epileptogenic process. However, to date, alterations in iron metabolism in the epileptogenic brain have not been addressed in detail. Iron-related neuropathology and antioxidant metabolic processes were investigated in resected brain tissue from patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), post-mortem brain tissue from patients who died after status epilepticus (SE) as well as brain tissue from the electrically induced SE rat model of TLE. Magnetic susceptibility of the presumed seizure-onset zone from three patients with focal epilepsy was compared during and after seizure activity. Finally, the cellular effects of iron overload were studied in vitro using an acute mouse hippocampal slice preparation and cultured human fetal astrocytes. While iron-accumulating neurons had a pyknotic morphology, astrocytes appeared to acquire iron-sequestrating capacity as indicated by prominent ferritin expression and iron retention in the hippocampus of patients with SE or TLE. Interictal to postictal comparison revealed increased magnetic susceptibility in the seizure-onset zone of epilepsy patients. Post-SE rats had consistently higher hippocampal iron levels during the acute and chronic phase (when spontaneous recurrent seizures are evident). In vitro, in acute slices that were exposed to iron, neurons readily took up iron, which was exacerbated by induced epileptiform activity. Human astrocyte cultures challenged with iron and ROS increased their antioxidant and iron-binding capacity, but simultaneously developed a pro-inflammatory phenotype upon chronic exposure. These data suggest that seizure-mediated, chronic neuronal iron uptake might play a role in neuronal dysfunction/loss in TLE-HS. On the other hand, astrocytes sequester iron, specifically in chronic epilepsy. This function might transform astrocytes into a highly resistant, pro-inflammatory phenotype potentially contributing to pro-epileptogenic inflammatory processes.


Asunto(s)
Epilepsia del Lóbulo Temporal/complicaciones , Hipocampo/metabolismo , Trastornos del Metabolismo del Hierro/etiología , Hierro/metabolismo , Estado Epiléptico/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Animales , Astrocitos/metabolismo , Astrocitos/patología , Estudios de Casos y Controles , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/patología , Femenino , Humanos , Trastornos del Metabolismo del Hierro/patología , Masculino , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Ratas , Estado Epiléptico/metabolismo , Estado Epiléptico/patología
15.
J Neurosci ; 41(31): 6714-6725, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34183446

RESUMEN

An indispensable feature of episodic memory is our ability to temporally piece together different elements of an experience into a coherent memory. Hippocampal time cells-neurons that represent temporal information-may play a critical role in this process. Although these cells have been repeatedly found in rodents, it is still unclear to what extent similar temporal selectivity exists in the human hippocampus. Here, we show that temporal context modulates the firing activity of human hippocampal neurons during structured temporal experiences. We recorded neuronal activity in the human brain while patients of either sex learned predictable sequences of pictures. We report that human time cells fire at successive moments in this task. Furthermore, time cells also signaled inherently changing temporal contexts during empty 10 s gap periods between trials while participants waited for the task to resume. Finally, population activity allowed for decoding temporal epoch identity, both during sequence learning and during the gap periods. These findings suggest that human hippocampal neurons could play an essential role in temporally organizing distinct moments of an experience in episodic memory.SIGNIFICANCE STATEMENT Episodic memory refers to our ability to remember the what, where, and when of a past experience. Representing time is an important component of this form of memory. Here, we show that neurons in the human hippocampus represent temporal information. This temporal signature was observed both when participants were actively engaged in a memory task, as well as during 10-s-long gaps when they were asked to wait before performing the task. Furthermore, the activity of the population of hippocampal cells allowed for decoding one temporal epoch from another. These results suggest a robust representation of time in the human hippocampus.


Asunto(s)
Hipocampo/fisiología , Memoria Episódica , Neuronas/fisiología , Percepción del Tiempo/fisiología , Adulto , Electrocorticografía , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Neurology ; 96(21): e2639-e2652, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33910938

RESUMEN

OBJECTIVE: To identify the molecular signaling pathways underlying sudden unexpected death in epilepsy (SUDEP) and high-risk SUDEP compared to control patients with epilepsy. METHODS: For proteomics analyses, we evaluated the hippocampus and frontal cortex from microdissected postmortem brain tissue of 12 patients with SUDEP and 14 with non-SUDEP epilepsy. For transcriptomics analyses, we evaluated hippocampus and temporal cortex surgical brain tissue from patients with mesial temporal lobe epilepsy: 6 low-risk and 8 high-risk SUDEP as determined by a short (<50 seconds) or prolonged (≥50 seconds) postictal generalized EEG suppression (PGES) that may indicate severely depressed brain activity impairing respiration, arousal, and protective reflexes. RESULTS: In autopsy hippocampus and cortex, we observed no proteomic differences between patients with SUDEP and those with non-SUDEP epilepsy, contrasting with our previously reported robust differences between epilepsy and controls without epilepsy. Transcriptomics in hippocampus and cortex from patients with surgical epilepsy segregated by PGES identified 55 differentially expressed genes (37 protein-coding, 15 long noncoding RNAs, 3 pending) in hippocampus. CONCLUSION: The SUDEP proteome and high-risk SUDEP transcriptome were similar to those in other patients with epilepsy in hippocampus and cortex, consistent with diverse epilepsy syndromes and comorbid conditions associated with SUDEP. Studies with larger cohorts and different epilepsy syndromes, as well as additional anatomic regions, may identify molecular mechanisms of SUDEP.


Asunto(s)
Corteza Cerebral/fisiopatología , Epilepsia/fisiopatología , Hipocampo/fisiopatología , Muerte Súbita e Inesperada en la Epilepsia , Adulto , Niño , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Proteómica , Transducción de Señal/fisiología
17.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33141761

RESUMEN

Matrix metalloproteinases (MMPs) are synthesized by neurons and glia and released into the extracellular space, where they act as modulators of neuroplasticity and neuroinflammatory agents. Development of epilepsy (epileptogenesis) is associated with increased expression of MMPs, and therefore, they may represent potential therapeutic drug targets. Using quantitative PCR (qPCR) and immunohistochemistry, we studied the expression of MMPs and their endogenous inhibitors tissue inhibitors of metalloproteinases (TIMPs) in patients with status epilepticus (SE) or temporal lobe epilepsy (TLE) and in a rat TLE model. Furthermore, we tested the MMP2/9 inhibitor IPR-179 in the rapid-kindling rat model and in the intrahippocampal kainic acid mouse model. In both human and experimental epilepsy, MMP and TIMP expression were persistently dysregulated in the hippocampus compared with in controls. IPR-179 treatment reduced seizure severity in the rapid-kindling model and reduced the number of spontaneous seizures in the kainic acid model (during and up to 7 weeks after delivery) without side effects while improving cognitive behavior. Moreover, our data suggest that IPR-179 prevented an MMP2/9-dependent switch-off normally restraining network excitability during the activity period. Since increased MMP expression is a prominent hallmark of the human epileptogenic brain and the MMP inhibitor IPR-179 exhibits antiseizure and antiepileptogenic effects in rodent epilepsy models and attenuates seizure-induced cognitive decline, it deserves further investigation in clinical trials.


Asunto(s)
Encéfalo/enzimología , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Estado Epiléptico/tratamiento farmacológico , Animales , Encéfalo/patología , Epilepsia del Lóbulo Temporal/enzimología , Epilepsia del Lóbulo Temporal/patología , Femenino , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/enzimología , Estado Epiléptico/patología
18.
Cell Rep Med ; 1(7): 100101, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33103128

RESUMEN

Tumor-educated platelets (TEPs) are potential biomarkers for cancer diagnostics. We employ TEP-derived RNA panels, determined by swarm intelligence, to detect and monitor glioblastoma. We assessed specificity by comparing the spliced RNA profile of TEPs from glioblastoma patients with multiple sclerosis and brain metastasis patients (validation series, n = 157; accuracy, 80%; AUC, 0.81 [95% CI, 0.74-0.89; p < 0.001]). Second, analysis of patients with glioblastoma versus asymptomatic healthy controls in an independent validation series (n = 347) provided a detection accuracy of 95% and AUC of 0.97 (95% CI, 0.95-0.99; p < 0.001). Finally, we developed the digitalSWARM algorithm to improve monitoring of glioblastoma progression and demonstrate that the TEP tumor scores of individual glioblastoma patients represent tumor behavior and could be used to distinguish false positive progression from true progression (validation series, n = 20; accuracy, 85%; AUC, 0.86 [95% CI, 0.70-1.00; p < 0.012]). In conclusion, TEPs have potential as a minimally invasive biosource for blood-based diagnostics and monitoring of glioblastoma patients.


Asunto(s)
Plaquetas/metabolismo , Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico , Monitoreo Fisiológico/métodos , Esclerosis Múltiple/diagnóstico , ARN Neoplásico/genética , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Plaquetas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/cirugía , Estudios de Casos y Controles , Progresión de la Enfermedad , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/cirugía , Humanos , Persona de Mediana Edad , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Metástasis de la Neoplasia , Empalme del ARN , ARN Neoplásico/metabolismo , Curva ROC , Análisis de Supervivencia , Microambiente Tumoral/genética
19.
Neurobiol Dis ; 134: 104612, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31533065

RESUMEN

Our understanding of mesial temporal lobe epilepsy (MTLE), one of the most common form of drug-resistant epilepsy in humans, is derived mainly from clinical, imaging, and physiological data from humans and animal models. High-throughput gene expression studies of human MTLE have the potential to uncover molecular changes underlying disease pathogenesis along with novel therapeutic targets. Using RNA- and small RNA-sequencing in parrallel, we explored differentially expressed genes in the hippocampus and cortex of MTLE patients who had undergone surgical resection and non-epileptic controls. We identified differentially expressed genes in the hippocampus of MTLE patients and differentially expressed small RNAs across both the cortex and hippocampus. We found significant enrichment for astrocytic and microglial genes among up-regulated genes, and down regulation of neuron specific genes in the hippocampus of MTLE patients. The transcriptome profile of the small RNAs reflected disease state more robustly than mRNAs, even across brain regions which show very little pathology. While mRNAs segregated predominately by brain region for MTLE and controls, small RNAs segregated by disease state. In particular, our data suggest that specific miRNAs (e.g., let-7b-3p and let-7c-3p) may be key regulators of multiple pathways related to MTLE pathology. Further, we report a strong association of other small RNA species with MTLE pathology. As such we have uncovered novel elements that may contribute to the establishment and progression of MTLE pathogenesis and that could be leveraged as therapeutic targets.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , ARN Pequeño no Traducido/genética , Adulto , Anciano , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Transcriptoma , Adulto Joven
20.
Glia ; 68(1): 60-75, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31408236

RESUMEN

Temporal lobe epilepsy (TLE) is a chronic neurological disease in humans, which is refractory to pharmacological treatment in about 30% of the patients. Reactive glial cells are thought to play a major role during the development of epilepsy (epileptogenesis) via regulation of brain inflammation and remodeling of the extracellular matrix (ECM). These processes can be regulated by microRNAs (miRs), a class of small non-coding RNAs, which can control entire gene networks at a post-transcriptional level. The expression of miRs is known to change dynamically during epileptogenesis. miR-132 is one of the most commonly upregulated miRs in animal TLE models with important roles shown in neurons. However, the possible role of miR-132 in glia remains largely unknown. The aim of this study was to characterize the cell-type specific expression of miR-132 in the hippocampus of patients with TLE and during epileptogenesis in a rat TLE model. Furthermore, the potential role of miR-132 was investigated by transfection of human primary cultured astrocytes that were stimulated with the cytokines IL-1ß or TGF-ß1. We showed an increased expression of miR-132 in the human and rat epileptogenic hippocampus, particularly in glial cells. Transfection of miR-132 in human primary astrocytes reduced the expression of pro-epileptogenic COX-2, IL-1ß, TGF-ß2, CCL2, and MMP3. This suggests that miR-132, particularly in astrocytes, represents a potential therapeutic target that warrants further in vivo investigation.


Asunto(s)
Astrocitos/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , MicroARNs/biosíntesis , Neuroglía/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Astrocitos/patología , Células Cultivadas , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Femenino , Expresión Génica , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Neuroglía/patología , Ratas , Ratas Sprague-Dawley , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...